GSK-3beta in mouse fibroblast controls wound healing and fibrosis through an endothelin-1-dependent mechanism.

نویسندگان

  • Mohit Kapoor
  • Shangxi Liu
  • Xu Shi-wen
  • Kun Huh
  • Matthew McCann
  • Christopher P Denton
  • James R Woodgett
  • David J Abraham
  • Andrew Leask
چکیده

Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded by 2 genes, GSK3A and GSK3B. GSK-3 is thought to be involved in tissue repair and fibrogenesis, but its role in these processes is currently unknown. To investigate the function of GSK-3beta in fibroblasts, we generated mice harboring a fibroblast-specific deletion of Gsk3b and evaluated their wound-healing and fibrogenic responses. We have shown that Gsk3b-conditional-KO mice (Gsk3b-CKO mice) exhibited accelerated wound closure, increased fibrogenesis, and excessive scarring compared with control mice. In addition, Gsk3b-CKO mice showed elevated collagen production, decreased cell apoptosis, elevated levels of profibrotic alpha-SMA, and increased myofibroblast formation during wound healing. In cultured Gsk3b-CKO fibroblasts, adhesion, spreading, migration, and contraction were enhanced. Both Gsk3b-CKO mice and fibroblasts showed elevated expression and production of endothelin-1 (ET-1) compared with control mice and cells. Antagonizing ET-1 reversed the phenotype of Gsk3b-CKO fibroblasts and mice. Thus, GSK-3beta appears to control the progression of wound healing and fibrosis by modulating ET-1 levels. These results suggest that targeting the GSK-3beta pathway or ET-1 may be of benefit in controlling tissue repair and fibrogenic responses in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential Therapeutic Targets for Cardiac Fibrosis TGF , Angiotensin, Endothelin, CCN2, and PDGF, Partners in Fibroblast Activation

Fibrosis is one of the largest groups of diseases for which there is no therapy but is believed to occur because of a persistent tissue repair program. During connective tissue repair, “activated” fibroblasts migrate into the wound area, where they synthesize and remodel newly created extracellular matrix. The specialized type of fibroblast responsible for this action is the -smooth muscle acti...

متن کامل

Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation.

Fibrosis is one of the largest groups of diseases for which there is no therapy but is believed to occur because of a persistent tissue repair program. During connective tissue repair, "activated" fibroblasts migrate into the wound area, where they synthesize and remodel newly created extracellular matrix. The specialized type of fibroblast responsible for this action is the alpha-smooth muscle...

متن کامل

Knockout of Endothelial Cell-Derived Endothelin-1 Attenuates Skin Fibrosis but Accelerates Cutaneous Wound Healing

Endothelin (ET)-1 is known for the most potent vasoconstrictive peptide that is released mainly from endothelial cells. Several studies have reported ET-1 signaling is involved in the process of wound healing or fibrosis as well as vasodilation. However, little is known about the role of ET-1 in these processes. To clarify its mechanism, we compared skin fibrogenesis and wound repair between va...

متن کامل

Histopathological Investigation of the Effect of Ozonated Water on Skin Ulcer Healing Process in Isolation Stress Mouse Model

Background and Objective: Skin ulcers and their slow healing are considered as one of the important medical aspects. Nowadays, various antibiotics and materials are used to accelerate the wound healing process. One of the methods taken in the field of wound healing is using ozone. On the other hand, one of the factors that hurt the speed of wound healing is stress. Therefore, the present study ...

متن کامل

Inhibition of glycogen synthase kinase 3beta during heart failure is protective.

Glycogen synthase kinase (GSK)-3, a negative regulator of cardiac hypertrophy, is inactivated in failing hearts. To examine the histopathological and functional consequence of the persistent inhibition of GSK-3beta in the heart in vivo, we generated transgenic mice with cardiac-specific overexpression of dominant negative GSK-3beta (Tg-GSK-3beta-DN) and tetracycline-regulatable wild-type GSK-3b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 118 11  شماره 

صفحات  -

تاریخ انتشار 2008